
Persistence-Based Production Rules for
On-Board Satellite Automation

Michael A. Swartwout, Christopher A. Kitts, Rajesh K. Batra
Space Systems Development Laboratory

Stanford University
Durand 250 / 496 Lomita Mall

Stanford, CA 94305-4035
650/725-6794 (rcktboy@leland.stanford.edu)

Abstract— As the cost of operations comes under greater
scrutiny, the use of automated systems is receiving greater
attention. A vital aspect of on-board automation is the manner
in which system knowledge and operational procedures are
represented. Production rules are a commonly-implemented
method. They possess the advantage of coherent, logical
formulation of responses, represented in a manner consistent
with operational procedures. However, they can be inflexible
to changing parameters, insensitive to issues of time duration,
and require many rules to cover all cases. To be of greater use
to automated space missions, production-rule systems need to
be augmented with the ability to handle uncertainty and
incorporate temporal characteristics.

As part of its research program in space system operations and
autonomy, Stanford University's Space Systems Development
Laboratory (SSDL) has developed an advanced production rule
approach to automation. These production rules track the
temporal persistence of conditionals as a primitive aspect of
their implementation. The persistence-based production rules
have been integrated into the Chatterbox flight software on
Sapphire, SSDL's first satellite. Chatterbox's programmable
production rules control a beacon-based health management
system as well as other on-board activities.

This paper motivates the use of persistence as an integral
aspect of automated health monitoring, introduces the concept
of an “integral of threat” to replace static alarm thresholds,
describes how persistence tracking has been integrated into
Chatterbox, and reviews the applications of the resulting
system for SSDL's spacecraft.

TABLE OF CONTENTS

1. INTRODUCTION

2. PRODUCTION RULES FOR AUTOMATION

3. PERSISTENCE & TEMPORAL REASONING

4. IMPLEMENTATION: SAPPHIRE

5. CONCLUSIONS & FUTURE WORK

1. INTRODUCTION

As the cost of spacecraft mission operations comes under
greater scrutiny, the use of automated systems is receiving
greater attention. Automation allows for cost savings during

nominal and even off-nominal operations. Additionally, on-
board automation can enable advanced mission concepts that
cannot be effectively performed with ground-based control.

A vital aspect of on-board automation is the manner in which
system knowledge and operational procedures are represented.
If the spacecraft is to be highly autonomous, it must possess
the ability to clearly determine parameters such as the vehicle
state and the status of mission goals, and to formulate
responses that are flexible to these time-varying parameters. It
is, however, equally important that the information be
conveyed to ground operators in a manner consistent with their
capabilities to understand and reason. This trade-off must also
take into account the capabilities of the computational
hardware available to the spacecraft.

Production rules are a commonly-implemented solution to such
automation problems. They possess the advantage of coherent,
logical formulation of responses, represented in a manner
consistent with standard operational procedures. However,
they can be inflexible to changing parameters, insensitive to
issues of time duration, and can become quite complex. To be
of greater use to automated space missions, production-rule
systems need to be augmented with the ability to handle
uncertainty and perform temporal reasoning.

As part of its research program in space system operations and
autonomy, Stanford University's Space Systems Development
Laboratory (SSDL) has developed an advanced production rule
system to support on-board spacecraft automation. This
production rule system tracks the temporal persistence of
conditional states as a primitive aspect of its implementation.

The persistence-based production rule system has been
integrated into the Chatterbox flight software that has been
developed for Sapphire, SSDL's first spacecraft. Chatterbox's
programmable production rules are used to control a beacon-
based health management system as well as other on-board
anomaly protection and management activities.

Operational experience with Sapphire has led to several
innovations and lessons learned. These lessons will be applied
to creating a more advanced version of this software for
SSDL's future multi-satellite Emerald mission. The production
rules will cover similar responsibilities as on Sapphire and
assume other on-board management activities.

2

Automation vs. Autonomy

Before further discussion, it will be helpful to clarify the
definitions of "automation" and "autonomy". Automation as
defined for space systems is the capability to perform a specific
task without outside assistance. Typically, the attitude control
subsystems of many spacecraft are automated such that the
vehicle can point in a specific direction in the presence of
unknown disturbances. Autonomy is the capability to translate
ambiguous goals into specific action, usually while meeting a
set of time-varying constraints. The Deep Space 1 spacecraft,
for example, has an autonomous navigation system: a specific
comet is identified and the spacecraft is capable of targeting,
tracking, and adjusting its orbit to intercept that comet without
further input from the ground [1].

There has been much study in both fields of autonomy and
automation. The focus of this paper is the automation of
spacecraft health monitoring procedures, which is intended to
reduce the cost and improve timely response of spacecraft
anomaly detection. The bulk of this study is therefore devoted
to automating this particular task. However, such automation
innovations can also be applied to autonomous operations;
these possibilities are also discussed.

This paper motivates the use of persistence as an integral
aspect of automated health monitoring, introduces the “integral
of threat” concept as an alternative to static alarm limits,
describes how persistence tracking has been integrated into the
Chatterbox production rule system, and reviews the
applications of the resulting system for SSDL's spacecraft.

2. PRODUCTION RULES FOR AUTOMATION

Automation can improve both the competitive performance of
space missions, often considered in terms of cost, timeliness,
and quality. Mission quality is improved because highly
capable electronics allow information to processed more
rapidly with fewer mistakes, compared with conventional,
human-intensive approaches. It is also expected that
automated systems require fewer humans to manage the same
tasks compared with a conventional approach, thereby
reducing cost. Another significant advantage of automation is
it enables the migration of responsibilities from ground control
to spacecraft control, which allows for faster response and less
resources devoted to communication.

However, before automation can be made useful, the
responsibilities of the human operators must be translated into
a coherent set of procedures. This seemingly simple axiom is
actually quite difficult to apply to spacecraft operations,
because much of conventional operations is based on
experiential reasoning, using procedures and equipment
incrementally developed over a series of missions.

One of the commonly used methods for expressing operational
procedures in both automated and conventional systems is to
formulate conditional, "if-then" statements. Also called
production rules, these conditionals capture both primitive and
high-level directions about the system. Typical production

rules are: "If the battery temperature exceeds 30ºC, then put
the vehicle into safe mode," and "If the vehicle is in safe mode,
then schedule additional contacts and notify vehicle experts."

Advantages of Production Rules

One of the primary advantages to production rules is that they
express information in the same manner used by many human
operators, while at the same time this format is expressible in
many computing languages. Therefore the procedures can be
easily translated into code, and the automated system is easy
for humans to understand, troubleshoot, and reason about. This
logical transparency is very important when human operators
must interact with an automated system [2, 3].

Production rules are simple to implement; if-then constructs
exist in many programming languages. Because of their
primitive nature, production rules can be incorporated into a
variety of complex or sophisticated architectures for execution.
For example, production rules can be incorporated into a
"production system," where the order of execution does not
matter. This enables very efficient code structures and
powerful algorithms to implement them.

Whatever the method, the essential point is that the process of
executing production rules can be developed independently of
the formulation of the rules themselves. This scheme allows
for great flexibility on the part of the designer. As long as the
production rules reflect the operational tasks to be automated,
a variety of properly constructed implementations are possible.

Disadvantages of Production Rules

The disadvantages of production rules can be summarized in
one word: fragility. Production rules tend to be narrowly
defined to effectively manage specific situations, but they do
not adapt well to uncertain conditions. Unlike human
operators, automated methods using production rules do not
possess the ability to intuitively reason about new situations.
Furthermore, although the rules reflect the pre-defined logical
decisions used by operators, it is not at all clear that the
operators' established methods are the best approach for many
tasks in spacecraft operations.

For example, in the task of health monitoring, it is typical to
define high and low alarm thresholds for each sensor; when a
sensor goes beyond the thresholds, the component is defined
to be in a dangerous condition and the operator takes action. If
the sensor is noisy, however, the threshold may be crossed
even though the component is indeed healthy. Moreover, for
a noisy sensor or even a physical condition where the output is
hovering near the threshold, there could be repeated excursions
into and out of alarm conditions. In these common situations,
the manner in which anomalies are defined – threshold
crossing – impairs the operator’s ability to discern true
anomalies from false alarms.

In addition, production rules can only be written for sensors
and conditions that are known. Given the extreme complexity
of modern spacecraft, not all health conditions can be
determined at design time. It may be that a certain sensor

3

reflects a previously unknown phenomenon vital to the
understanding of the vehicle state. Until this condition is
identified, it goes unreported. Incrementally modifying an
automated system based on experience is a cumbersome means
of defining operational procedures.

Case Study: Alarm Thresholds

Both the advantages and disadvantages of production rules can
be demonstrated in a brief study of alarm thresholds. As
mentioned above, it is common in mission operations to define
functional and survival high and low limits for each vehicle
sensor. Much of the operator’s time in health monitoring is
spent verifying that the sensors remain within acceptable
limits.

The process of defining alarm thresholds is at best an inexact
science. Typically, the thresholds reflect functional or survival
limits for components as specified by the manufacturer, often
padded with a safety margin. However, a component may be
malfunctioning even though its outputs are well within the
functional limits. A sensor’s expected output usually falls in
a narrower band, inside the functional limits, that depends on
the functional mode of the spacecraft and environmental
conditions such as sunlight or eclipse. Simple high/low
thresholds cannot accommodate more sophisticated models of
the system.

To work around this limitation, operators often define a series
of alarm thresholds for a given component, based on the type
of response needed or, in some cases, the mode of the vehicle.
The limits are checked on a case-by-case basis. While such
accommodations enable the simple rule-based approach to be
used, effective use of the rules requires a large and
cumbersome set of conditionals to cover every variation of
every state. Production rules are therefore limited by
computational complexity, programming error, and the ability
to rationally cover every possible alternative.

Philosophically speaking, the health monitoring task is not
fully expressed by the concept of alarm thresholds. For
example, if the upper limit of the battery temperature is defined
as 30ºC, there is a fundamental difference between sensor
readings of 30.01ºC and 45ºC. A human operator would
understand the difference between a slight or extreme
threshold violation, but a production rule defines both as the
same limit crossing. Most missions work around this issue by
implementing different alarm thresholds for each sensor, but
as was mentioned above, this leads to a cumbersome set of
rules. Even with this exhaustive set of rules, this concept of
overshoot is not truly expressed.

Furthermore, a human operator would not make a fundamental
distinction between a component at 29.99ºC and the same one
at 30.01ºC, yet the former is considered nominal and the latter
is an alarm. Defining alarms based on precise limits – a
definition forced by the use of production rules – obscures the
definition of anomalous behavior because it creates a fixed and
arbitrary line between nominal and anomalous behavior.

Conceptually, it would make sense that an output that hovers
just below the alarm threshold for several hours is more of a
concern than one that climbs from nominal, dips just into the
alert range, and then returns to well within in the nominal
range. Yet in a conventional system, only the second type
triggers the alarm, although it may not truly be a threat to the
component's health.

Each of these concepts is illustrated in Figure 1. A conceptual
difference exists between a lingering, high-value sensor output
(Type 1) and a short-duration spike (Type 2), but alarm-
threshold rules only consider the spike to be anomalous.
Moreover, a spike with a slightly lower threshold (Type 3)
would escape detection altogether, although there is little true
difference between these types.

Time

V
al

ue

Threshold

Type 1

Type 2

Type 3

Figure 1 Illustration of the difference between lingering
near the threshold (Type 1), spiking above it (Type 2) or

spiking near it (Type3)

In summary, production rules provide a powerful and easy
means for implementing standard operating procedures. But
for certain tasks, especially anomaly detection, production
rules have significant shortcomings. The rules are highly
dependent on how parameters such as alarm limits are
specified, and their inability to capture higher-level
information such as temporal constraints constrains their
effective implementation.

3. PERSISTENCE & TEMPORAL REASONING

Because of the limitations described above, advanced
anomaly-detection techniques typically employ other methods
than alarm thresholds to distinguish abnormal behavior from
normal behavior. These methods also require more advanced
computing capabilities. However, given the limited processing
available to current and planned SSDL spacecraft, the authors
were reluctant to abandon the simplicity and operator-
readability of production rules.

It was believed that a simple modification – incorporating an
explicit sense of time – could enable enhanced operational
performance without requiring significantly enhanced
computational performance. This modification is called
persistence, which indicates that the condition for a rule must
hold true for a specified amount of time before the action is
executed.

4

One potential implementation is presented in Figure 2. In this
approach persistence is measured as a counter that increments
each sensing cycle where the sensor output exceeds the
threshold and decrements when the output is measured within
the nominal range. The maximum persistence in this example
is four cycles. Once the maximum is reached, the conditional
clause is defined to "latch" true; the condition is considered to
be true until the persistence counter decrements back to the
minimum value, at which point the conditional "unlatches"
back to false. This particular implementation is used for the
Chatterbox operating system and will be discussed in some
detail, below.

Time

V
al

ue

1

0 0

1 2

3

4

4

3 2

1 0

Figure 2 An example of persistence with the time threshold
at four cycles; high latching is in red, low latching in black.

Implementing persistence brings immediate benefits. It
directly addresses the issues of noisy sensors and limit cycling.
There is an explicit lag between the time the sensor crosses the
alarm threshold and the time it is considered a true reading;
presumably, confidence that this is a true threshold crossing
grows as persistence increases. While this lag can adversely
affect the timely response to a true alarm, it is possible to
redefine the alarm thresholds and persistence values to
minimize the impact of lag.

Persistence-tracking production rules have already been
applied to on-board fault protection in space missions, such as
Magellan [4] and Cassini [5]. Persistence was used in these
missions primarily to protect against false alarms. They also
tended to favor one-directional persistence counters; the
counter would count up but would reset to zero if the output
returned to nominal.

Conceptual Power of Persistence

However, these and other methods to track persistence have
not explored the conceptual underpinnings. Such an
investigation allows for more effective use of persistence for
production rules, and points to future powerful applications.

Figure 1 presented the dilemma of two outputs: one, which
hovers just below a threshold – setting off no alarm – and
another that briefly spikes above it. The underlying reason
behind this dilemma is that it is not just the sensor value that
matters, but also how long it persists above the threshold. This
fact is demonstrated by the nature of Figure 1 itself; the
problem becomes apparent when a time-history of the sensor
output is plotted against the alarm thresholds.

In a very real sense, a component alert threshold is better
formulated as an integral. True violation of an alert threshold
is when the time-integrated sum of a sensor output over a
specified time interval gets too high. Such a conceptualization
enables very simple rules to cover a broad spectrum of
thresholds. The batteries remaining at an elevated temperature
for a long period of time are considered just as threatened as a
short duration high-temperature event. Figure 3 demonstrates
the concept of the “integral of threat.”

Long-term threat

Short-term threat

Time

V
al

ue

Nominal State

Figure 3 Comparing the integral of threats between a low-
value long-term threat and a short-term high-value threat.

For systems with sufficient computing power, persistence
counters provide an effective way to represent this "integral of
the threat." Each time the value persists above a nominal level
of interest, the overshoot can be added to the total threat sum
until the sum exceeds its allowed maximum. Even for systems
not capable of such sums (such as Sapphire's Chatterbox,
described below), the integral can be approximated by setting
a low alarm threshold with a high persistence to catch the
lingering threats, and having a second higher alarm threshold
with a low persistence to catch the short-duration spikes. Such
an approach does not solve the problem of having many rules
for the same sensor output, but the addition of persistence
tracking still enables better performance. It also serves to
demonstrate the usefulness of the method for future
implementation with more capable computers.

Structure of Persistence

The discussions of persistence have thus far largely ignored the
specific implementation details. There are several options,
such as strictly incrementing versus incrementing and

5

decrementing, and latching versus resetting to default. The
specific choice will depend on the nature of the production
rules being implemented. The Sapphire study of Section 4
uses persistence counters which both increment and
decrement, and which latch true. The design choices involved
will be explained, below.

4. IMPLEMENTATION: SAPPHIRE

Sapphire is the first spacecraft designed, built and managed by
students at SSDL [6]. Shown in Figure 4, the Sapphire vehicle
is approximately 44 cm across, 31 cm tall, with a mass of 18
kg. The project was started in January 1994 and the spacecraft
was fully tested and completed in July 1998. It is now
awaiting a secondary launch opportunity. This delay in
securing a launch has been a mixed blessing, as it has allowed
the vehicle to be part of several controlled ground-based
experiments such as this production rule study.

Introduction to Sapphire

Sapphire's major components are modified and extensively
tested commercial products, such as a Motorola 68332
microcontroller, Hamtronics 70 cm band transmitter and 2 m
band receiver, and Kantronics terminal node controller.
Several student-built boards are responsible for telemetry
sensing and analog to digital conversion, and students
fabricated the aluminum honeycomb structure as well. Space-
rated Sanyo batteries, GaAs solar cells, and radiation-hardened
memory are strategically included in the spacecraft. The
spacecraft is passively stabilized by a combination of
permanent, body-mounted permanent magnets and a
radiometer-induced spin caused by different paints on the
turnstile transmit antennae.

Sapphire's primary mission is to perform first-flight testing of
a set of micromachined infrared sensors. Developed by
Professor Tom Kenny of Stanford's Design Division, these
devices are room-temperature edge detectors that fit within a
microchip [7]. Sapphire's other instruments involve a student-
interest commercial camera and voice synthesizer.

In addition, Sapphire has become a research testbed for the
authors' PhD projects within SSDL. It will be the first vehicle
fully operated within the ASSET operations architecture [8]
and serves as an experimental platform for research in beacon-
based health monitoring [9, 10]. In this latter function, the
flight software for Sapphire was modified to enable on-board
health assessment.

Written in C, the Chatterbox operating system was developed
by SSDL students for the 68332 microprocessor, which serves
as Sapphire's CPU [11]. Chatterbox is a bulletin-board system
with a UNIX-like interface, capable of handling up to 26
separate users with varying degrees of access permissions.
Functions are divided into high-level controllers and device
drivers, allowing for future upgrades to individual components
without major code overhaul. Specific built-in features include
a file system, time-based command scheduling, programmable
variables, and the production rule system, described below.
The Chatterbox code consists of 15000 lines that compile into

a 148 kb application, plus another 4000 lines and 134 kb for
the software drivers specific to the camera payload.

Figure 4 Sapphire in launch configuration; the umbilical
cord in the lower left is an external power source which also

trickle-charges the batteries.

Overview of Beacon Monitoring

Beacon-based health monitoring, also called beacon
monitoring, is a proposed cost-saving alternative to
conventional anomaly detection and notification for spacecraft
[12]. The ground control no longer performs regular state of
health contacts, resulting in significant cost savings in
communication resources and manpower. The on-board
software becomes responsible for observing the vehicle state
and determining whether or not the system is healthy. Instead
of downlinking the full telemetry to the ground, the vehicle
broadcasts a simple low-bandwidth signal that maps the
vehicle health to a few states corresponding to the urgency of
operator response. The signals are received by automated
stations and relayed to mission control.

6

Implementation of Production Rules

The production rule system within Chatterbox is based on
comparing a sensor against high and low thresholds. An
output that persists latches the rule and its action is executed.
Any system command can be used as the action clause of the
production rule. This ability to utilize any command – or even
sequence of commands – in the response gives Chatterbox
great flexibility in implementation. Furthermore, any of the
production rules can be uploaded or altered through user
commands.

Persistence is an essential element of Chatterbox production
rules. Sapphire’s sensors are particularly noisy, and thus
persistence is needed to prevent cycling around a threshold
boundary. Moreover, alarm thresholds that incorporate the
time element are necessary in order to make the best use of the
beacon monitoring.

Chatterbox implements persistence as a counter. The
production rules are checked on a regular interval of ten
seconds. The persistence counter is incremented each time the
sensor of interest is determined to be outside the threshold
limits, and is decremented each time it is within limits. When
the rule latches, and every cycle it remains latched, the
response is executed. The persistence counter must step back
to zero before the rule unlatches.

This definition of persistence is used because it reflects the
logic behind the anomaly detection algorithms. Anomalies are
defined as persistent excursions beyond some threat threshold.
As described in Section 3, some anomalies are defined as a
low-level excursion that persists for a long period of time,
while others indicate a high-level excursion that may only last
a short time. Since the Sapphire system has different
responses to each of these threat types, it is helpful to monitor
them with different production rules and persistence counters.

Note that this method for implementing persistence can be
ambiguous, since the same counter is used for high and low
limits. A sensor that jumped from an excessively high value
to an excessively low value between cycles would increment
the counter without any indication of this radical jump. For
Sapphire it was assumed that sensors would not exhibit such
behavior, and alert thresholds are selected accordingly.

The production rules are implemented as instances of a
specialized table structure. The structure consists of the

following elements: sensor to check, low threshold, high
threshold, persistence threshold, persistence counter, latch
indicator, and response. Typical table entries are listed in
Table 1. Note that latch indicator and persistence counters are
not defined by the user; the values change based on sensor
outputs. Therefore they are not listed in Table 1.

The Chatterbox tables are grouped into one main and up to ten
sub-tables. The rules of the main table are checked,
sequentially, every cycle. If a rule is triggered, then the
response is entered into the spacecraft command queue, and
table checking resumes. Commands in the queue are executed
sequentially, though not necessarily immediately after they are
placed in the queue.

Instead of calling for a command, a production rule's response
may be to jump to the start of another table. This allows
mode-dependent tables to be checked only when certain
conditions apply. For example, Sapphire has different
thresholds for some components depending on whether the
vehicle is in sunlight or eclipse. The mode-based tables are
called based on the measured input of the solar panels. Once
a sub-table has been checked from start to finish, the next entry
on the original table is examined. Sub-tables can jump to
other sub-tables as well.

During development of the production rule system, it became
evident that a set of programmable counters would be
extremely helpful. For example, it is necessary to keep track
of the number of panels in sunlight in order to determine
whether the spacecraft is in eclipse. Chatterbox was modified
to support these “virtual telemetry channels.” These channels
can be thought of as "scratch paper" that Chatterbox can use to
keep sums and store values. They are observable to both
Chatterbox and operators, and they are treated like telemetry
sensors in all respects – save that the values of these sensors
can be incremented, decremented, or set by command. The
addition of these channels enables Chatterbox to meet or
exceed all the requirements of the beacon monitoring
experiment.

Use of Production Rules – Beacon Monitoring Experiment

The primary use of the production rule system of Chatterbox is
to support beacon-based health monitoring of the Sapphire
spacecraft. These rules are used to encode a simple but
powerful on-board health monitoring system.

Table 1 Sample table entries for Chatterbox health monitoring system
Channel Low High Persist Action Description

30 2217 2490 4 sensor set 60 step 1
Increment channel 60 (critical_event_counter)
if channel 30 (BAT2 temperature) persists 4
cycles above or below the specified bit readings

58 0 250 1 sensor acquire 0-63 2 1
Take a full-telemetry snapshot if channel 58
(alert_episode_timer) is not between 0 and 250

60 - 1 1
os beacon message 10;
os users delete 65-68;
os pins set 0-4 0

Set beacon message to '10' (critical), log off all
users, and turn off all payloads if channel 60
(critical_event_counter) is 1 or more

0 - 0 1 9
Jump to table 9 if channel 0 is 0 or higher (i.e.,
always jump to table 9)

7

The main tasks of Sapphire’s health monitoring system are
listed in Table 2, along with the types of sensors used. Each
of these tasks correspond to a sub-table used on Sapphire.
Although the table language is somewhat cryptic, the ability to
correlate sub-tables with specific functions greatly enhances
operator/programmer understanding of flight system behavior.

The Sapphire spacecraft has been involved in a number of
beacon monitoring experiments since August 1998 [13]. Since
these experiments are designed to test the notification aspect
of beacon monitoring, they do not compare the performance of
the ground and on-board anomaly detection methods. In fact,
the operators rely on the conclusions of Chatterbox to
determine whether or not the vehicle is healthy and perform
checks to confirm that Chatterbox is functioning properly.
Still, these experiments have demonstrated the usefulness of
the Chatterbox tables.

Most notably, the first anomaly of the controlled experiment
was unplanned: a Northern California heat wave caused a
shutdown of the air conditioning in the building housing
Sapphire, causing the battery temperature to edge above the
safe limits! The production rules included conditions to check
on the battery health, so the anomaly was caught and proper
action was taken to safe the spacecraft.

Operational Experience & Lessons Learned

The process of running the beacon monitoring experiments and
other operator experience with the Chatterbox system has
resulted in several lessons for future implementations. This

process has been immeasurably aided by the fact that the
primary spacecraft operators were involved in defining and
coding the flight version of Chatterbox.

Beyond the programming errors and bugs that are normal for
an experimental system, Sapphire operators have identified
several changes to Chatterbox that would result in enhanced
performance. Most importantly, the production rules should
have access to more state information. Only the actual
telemetry sensors and the user-programmable "virtual
channels" can be examined within the production rule
framework. Operators suggest altering Chatterbox such that
available memory, the on-board clock, and the on/off state of
components could be the basis for production rules. These
added states would be extremely helpful in formulating very
flexible and capable rules.

Experience with these tables also highlights another difficulty
of automated systems. As expected, the table-based
production rules are easy to read by human operators and easy
to troubleshoot. However, this ease of use can be deceptive
because the tables are also quite susceptible to poor
programming. Several of the authors' initial health monitoring
tables involved conceptual oversights, resulting in false alarms
and so many summary files generated that the memory was
overloaded and shut down! It is imperative that complex,
intricate tables such as those used for Sapphire's anomaly
detection schemes be carefully proofread and tested before
implementing.

Table 2 Major beacon monitoring tables for Sapphire listed in order of execution; parentheses indicate conditional action.
Table Task Sensors Used Commands Issued

1 Determine eclipse state by
counting lit panels

Solar panel currents, sunlit panel counter
(virtual), eclipse indicator (virtual)

Increment sunlit panel counter, set eclipse
indicator

2 Determine whether any
alert events are occurring

Temperatures & voltages of many
components, alert event counter (virtual)

Increment alert event counter

3 Determine whether any
critical events are
occurring

Temperatures & voltages of many
components, critical event counter
(virtual)

Increment critical event counter

(4a) Sunlight mode, determine
whether a summary event
is occurring

Temperatures & voltages of many
components, summary event counter
(virtual), eclipse indicator (virtual)

Increment summary event counter

(4b) Eclipse mode, determine
whether any summary
events are occurring

Temperatures & voltages of many
components, summary event counter
(virtual), eclipse indicator (virtual)

Increment summary event counter

5 Any mode: determine
whether any summary
events are occurring

Temperatures & voltages of many
components, summary event counter
(virtual)

Increment summary event counter

(6) Log alert events Alert episode counter (virtual), alert
event counter (virtual), alert episode
timer (virtual)

Increment alert episode counter, increment
alert episode timer, store data snapshots,
change beacon message

(7) Log summary events Summary episode counter (virtual),
summary event counter (virtual),
summary episode timer (virtual)

Increment summary episode counter,
increment critical episode timer, store data
snapshots

(8) Log and respond to
critical events

Critical episode counter (virtual), critical
event counter (virtual), critical episode
timer (virtual)

Increment critical episode counter, increment
critical episode timer, store data snapshots,
change beacon, shut down payloads, log off
users, purge schedule

8

Many of the operators' comments further emphasized the need
for sufficient observability of both the vehicle state and also the
automated reasoning approach. The aforementioned
programming errors were easier to debug once they had been
detected because the table logic mimics the logic used by
operators. Furthermore, some initial enhancements to
Chatterbox's tables involved displaying the real-time
persistence values and latch status for the table entries. This
information was very helpful in understanding the inner
workings of Chatterbox, and in setting proper persistence and
threat limit values.

5. CONCLUSIONS & FUTURE WORK

The use of persistence in production rule systems already
enjoys significant on-orbit experience. It is the authors' belief
that further conceptual study and experimentation will enable
simple production rules to represent sophisticated automated
reasoning techniques. SSDL will continue such explorations
through its student-developed vehicles and by research.

Chatterbox will face continued ground-based testing of the
beacon monitoring experiment, involving refinements to its
anomaly detection algorithm. Once Sapphire is launched, the
tables will be involved in long-term beacon monitoring flight
experiments. In addition, as time permits the Sapphire team
will test non-health-related uses of the tables. For example, a
useful feature would be to take a picture when the Earth fills
the camera field of view or to capture a sunrise or sunset. The
tables can be structured to respond to specific solar panel and
Earth sensor outputs by snapping the photo.

In the near future, Chatterbox and its table-based production
rule architecture will be used for the next vehicles in SSDL's
spacecraft program: Emerald. This multi-satellite mission will
demonstrate some basic formation-flying technologies in
pursuit of lightning science research [14]. The tables will
again participate in on-board anomaly management,
incorporating the other observable elements described above.

The "integral of threat" concept has barely been explored, and
yet the settings for alert thresholds drive many aspects of
spacecraft health monitoring. Further examination of the
conceptual basis for these thresholds would greatly assist
designers and operators in determining how best to define an
anomaly.

Production rules are simple yet powerful tools for translating
operational procedures into automated systems. Augmenting
these rules with explicit persistence tracking helps to overcome
a number of the problems related to the fragility of this
reasoning technique. In the area of health monitoring, the use
of persistence has been demonstrated on the Sapphire vehicle
with significant benefits. These benefits underscore the fact
that further study of temporal behavior will improve the
performance of space mission operations.

ACKNOWLEDGEMENTS

The authors would like to thank their colleagues in the Space
Systems Development Laboratory, especially the past and

current members of the Sapphire development team, the
Chatterbox developers, and the beacon testing team. Special
thanks go to Professor Robert Twiggs for his continued
dedication to this laboratory in the role of lab director. The
authors would additionally like to thank the conference
reviewers whose comments have been very helpful in
constructing this paper. This work was performed in partial
satisfaction of graduate studies at Stanford University.

REFERENCES

[1] Fesq, Lorraine, Abdullah Aljabri, Christine Anderson,
Robert Connerton, Richard Doyle, Mark Hoffman, and Guy
Man, "Spacecraft Autonomy in the New Millenium,"
Guidance & Control 1996: Advances in the Astronautical
Sciences, volume 92, pp. 3-20.

[2] Thurman, David A., David M. Brann, and Christine M.
Mitchell, "An Architecture to Support Incremental Automation
of Complex Systems," Proceedings of the 1997 IEEE
Conference on Systems, Man, and Cybernetics, Orlando, FL,
12-15 October 1997, pp. 1174-1179.

[3] Leveson, Nancy G., and Everett Palmer, "Designing
Automation to Reduce Operator Errors," Proceedings of the
1997 IEEE Conference on Systems, Man, and Cybernetics,
Orlando, FL, 12-15 October 1997, pp. 1144-1150.

[4] Johnson, Steven, "Fault Protection Design for Unmanned
Interplanetary Spacecraft," Guidance & Control 1987:
Advances in the Astronautical Sciences, volume 63, pp. 3-18.

[5] Brown, Mark, Douglas E. Bernard, and Robert D.
Rasmussen, "Attitude and Articulation Control for the Cassini
Spacecraft: A Fault Tolerant Overview," Proceedings of the
14th AIAA/IEEE Digital Avionics Systems Conference,
Cambridge, MA, 5-9 November 1995, pp. 158-163.

[6] Twiggs, Robert J., and Michael A., Swartwout,
"SAPPHIRE - Stanford's First Amateur Satellite", Proceedings
of the 1998 AMSAT-NA Symposium, Vicksburg, MS, 14-16
October 1998.

[7] Grade J., A. Barzilai, K. Reynolds, C.H. Liu, A. Partridge,
H. Jerman, and T.W. Kenny, "Wafer-Scale Processing,
Assembly, and Testing of Tunneling Infrared Detectors,"
Proceedings of Transducers '97 - The 9th International
Conference on Solid State Sensors and Actuators.

[8] Kitts, Christopher A., and Michael A. Swartwout,
"Experimental Initiatives in Space Systems Operations",
Proceedings of the Annual Satellite Command, Control and
Network Management Conference, Reston, VA, 3-5
September 1997.

[9] Swartwout, Michael A., Carlos G. Niederstrasser,
Christopher A. Kitts, Raj K. Batra, and Ken P. Koller, ,
"Experiments in Automated Health Assessment and
Notification for the SAPPHIRE Microsatellite", Proceedings

9

of SpaceOps '98: The 5th International Symposium on Space
Mission Operations and Ground Data Systems, Tokyo, Japan,
1-5 June 1998.

[10] Niederstrasser, Carlos G., Christopher A. Kitts and
Michael A. Swartwout, "A Beacon Receiving Station for
Automated Health Operations," Proceedings of the 1999 IEEE
Aerospace Conference, Snowmass, CO, 3-10 March 1999.

[11] Batra, Raj K., "The Design of a Highly Configurable,
Reusable Operating System for Testbed Satellites",
Proceedings of the 1997 AIAA/USU Conference on Small
Satellites, Logan, UT, 15-18 September, 1997.

[12] Sue, Miles K., Robert Kahn, Gabor Lanyi, Victor
Vilnrotter, E.J. Wyatt, and Ted Peng, "Spacecraft Beacon
Monitoring for Efficient Use of the Deep Space Network,"
Proceedings of the 48th Annual International Astronautical
Federation Congress, Turin, Italy, 6-10 October 1997.

[13] Niederstrasser, Carlos G., "Development of a Satellite
Beacon Receiving Station", Proceedings of the 12th Annual
AIAA/USU Conference on Small Satellites, Logan, Utah, 31
August – 3 September 1998.

[14] Kitts, Christopher A., "EMERALD: A Low-Cost
Spacecraft Mission for Validating Formation Flying
Technologies," Proceedings of the 1999 IEEE Aerospace
Conference, Snowmass, CO, 3-10 March 1999.

Michael Swartwout is a Doctoral
Candidate in Aeronautics &
Astronautics at Stanford University.
 His research is in spacecraft
operations, specifically engineering
data summarization. Mr. Swartwout
has served as Project Leader for the
Sapphire spacecraft since 1994 and
is a co-investigator of the Beacon-Based Health Monitoring
Experiment. He is involved in SSDL's Automated Space
Systems Experimental Testbed (ASSET) operations research
system, developing the system architecture and managing the
blackboard tool that forms the basis of ASSET. Mr.
Swartwout earned a BS in Aeronautical & Astronautical
Engineering from the University of Illinois at Urbana-
Champaign in 1991, and a MS in the same, from the same, in
1992.

Christopher Kitts is a Doctoral
Candidate in Stanford University's
Design Division where he
specializes in spacecraft design and
command and control systems. He
holds a joint position as the
Graduate Student Director of
Stanford's Space Systems
Development Laboratory and as the Co-Director of the Santa
Clara Remote Extreme Environment Mechanisms Laboratory
at Santa Clara University. Mr. Kitts is also a space systems
engineer with Caelum Research Corporation at NASA's Ames
Research Center where he develops spacecraft design and
autonomy strategies for NASA's New Millennium Program.
 Mr. Kitts has served in the Air Force as a mission controller
of and the Chief of Academics for the Defense Satellite
Communications System III spacecraft constellation. He has
held a research position at the Air Force Phillips Laboratory
and has taught numerous graduate courses in space system
design. Mr. Kitts received a BSE from Princeton University,
an MPA from the University of Colorado, and an MS from
Stanford University.

Raj Batra is a Doctoral Candidate
in the Department of Aeronautics &
Astronautics at Stanford University.
 His research is in visualization of
fluid flow. Mr. Batra served on the
Sapphire CPU team from 1994 to
1998, and has been manager of the
team since 1996. He had primary
responsibility for developing the Chatterbox table system.
Mr. Batra earned a MS in Aeronautics & Astronautics from
Stanford in 1994 and a BS in Aerospace Engineering from the
University of Cincinnati in 1993.

