
Mercury: A Satellite Ground Station Control System
James W. Cutler

Christopher A. Kitts
Space Systems Development Laboratory

Durand Building, Room 250
Stanford University, Stanford, CA 94305-4035

(650) 723-6021, (650) 725-6794
jwc@stanford.edu, kitts@leland.stanford.edu

Abstract - As part of its research program in spacecraft
operations, Stanford University’s Space Systems
Development Laboratory (SSDL) is developing a ground
station control system to support advanced command and
telemetry operations. Known as Mercury, this control
system provides direct human console control, remote
human tele-operation, and script/program based autonomous
control. Each of these modes supports the ability to
configure and monitor station equipment as well as to
conduct command and telemetry operations with spacecraft.
The Mercury system is being implemented on SSDL’s
OSCAR-class amateur radio ground station. Mercury is
currently being used to operationally test two SSDL
microsatellites being prepared for launch in 1999. This
paper describes the design and operation of the Mercury
system, its implementation in the SSDL OSCAR station, its
use to conduct mission operations with SSDL
microsatellites, and its role in SSDL’s multi-satellite, multi-
ground station mission operations architecture.

TABLE OF CONTENTS

1. INTRODUCTION
2. SSDL GROUND STATION
3. MERCURY OVERVIEW
4. MERCURY IMPLEMENTATION
5. RESULTS
6. FUTURE DEVELOPMENT
7. CONCLUSIONS

1. INTRODUCTION

Automation is an enabling technology for reducing the cost
and enhancing the performance of operating space systems.
A variety of developers are currently exploring new
automated reasoning paradigms (expert systems, model-
based reasoning, case-based reasoning, etc.), the optimal
deployment of control authority (centralized vs.
decentralized, ground-based vs. spacecraft-based, etc.), and
the application of this technology to performing specific
tasks (planning, scheduling, execution, fault management,
etc.).

One specific area of interest lies in the development of
ground segment automation capability and its integration
with the space segment of the mission architecture. This

domain is of interest to a vast community and is an active
area of research within NASA, the military, and the
commercial sector. Specific low-level automation
objectives target issues such as ground station equipment
control as well as command and telemetry processing.
More advanced objectives include issues such as robust
contact execution and high level control.

Stanford's Space Systems Development Laboratory (SSDL)
is developing a simple but comprehensive spacecraft
operations network to develop and validate operations
technologies such as these [1]. The SSDL network will
include a number of microsatellites developed by SSDL and
its partners, a variety of globally distributed ground stations
for communicating with the microsatellites, Internet and
amateur radio based communication links, and a centralized
mission control complex for system management. Although
composed of simple elements, this system allows real-world
experiments to be executed in a controlled environment
capable of accommodating high risk and providing
experimental validation.

For this space system, automating ground segment tasks
serves as a means to explore ground automation issues; it
also enables efficient operation of the space system in
support of other research initiatives in planning, scheduling,
high level product specification, anomaly management, and
data summarization.

2. SSDL GROUND STATION

SSDL has a low-cost, small-scale ground station fully
equipped to contact OSCAR1-class satellites in the 2m and
70cm amateur radio bands (140Mhz and 430Mhz). The
station will be used to command and control SSDL’s
microsatellites upon their launch into orbit. Current ground
station use includes students obtaining satellite contact
experience by contacting various orbiting satellites and
other space vehicles containing amateur radio such as Mir
and the Space Shuttle. Students also use the station to
perform operations experiments on Sapphire, SSDL’s first
microsatellite, while it is waiting for a launch opportunity.

Figure 1 shows the general layout of SSDL’s ground station.
The main equipment includes:

1 OSCAR – Orbiting Satellite Carrying Amateur Radio.

- A full duplex transceiver operating on the 2m and
70cm bands with a 160W output amplifier for the
2m band.

- Two Yagi antennas for the 2m and 70cm bands
with preamplifiers and position control motors.

- A terminal node controller (TNC) that serves as a
modem and uses the amateur radio packet protocol,
AX 25, at rates up to 9600 baud.

- A 486 personal computer (PC) that interfaces to the
terminal node controller and also controls the
antenna position.

- A WEFAX weather station.

A full list of ground station equipment is found at
http://aa.stanford.edu/~ssdl/facilities/gs/index.html.

A student present in the ground station control room
manually operates station equipment. Satellite
communication sessions are conducted at the PC. Transmit
and receive frequencies are manually adjusted with the
transceiver tuning dial. Figure 2 shows a photograph of the
transceiver and TNC. The software package, InstantTrack,
running on the PC controls antenna positioning. Figure 3
shows an InstantTrack output screen tracking the space
station Mir.

The current operational scenario outlined above has
significant deficiencies. First, the simultaneous, manual
operation of station equipment required during a satellite
contact is often difficult at best. For example, the constant
frequency adjustments of the transceiver required to

compensate for doppler shift2 in satellite frequencies make it
difficult for a single operator to conduct a satellite contact.
Second, station operators are constrained to be physically
present at the station. This limits ground station location
possibilities and satellite contact opportunities. These and
other deficiencies produce an inefficient operational
scenario for the ground station.

3. MERCURY OVERVIEW

SSDL is developing a ground station control system named
Mercury to improve the operational efficiency of the station.
Mercury accomplishes this by providing a centralized
software interface to control all ground station equipment,
software routines to automate station operation, and an

2 The doppler effect is the change in transmitted frequency as seen by the
receiver due to a relative velocity between the two. An example is the high
pitched roar of a car as it approaches one and then the sudden decrease in
pitch as it drives by.

Figure 2 – Photograph of TNC (top) and transceiver
(bottom)

Figure 3 – Screen capture of InstantTrack output

Figure 1 – Block Diagram of SSDL OSCAR station

Internet gateway to access the centralized interface. Figure
4 shows block diagram of the Mercury control system.

Centralized Interface

Many of the ground station components are capable of
computer assisted control. The antenna positioning motors
can be directed through a PC expansion card. The
transceiver has a serial interface to tune frequencies and
determine receive signal levels. The terminal node
controller is interfaced through a standard RS-232 serial
port found on computers. Mercury centralizes software
control drivers for these components and provides a single
user interface to configure the ground station.

A common interface now exists for the operator to control
all station equipment from a single location. The operator is
freed from multiplexing between physically separated
equipment control panels. Complex equipment operation
procedures involving fine-tuning of control panels are now
mapped to simpler software commands. This centralized
interface simplifies manual operation of the station
equipment.

Complementing the software control drivers is a power
control module. Power management of station is
controllable through the software interface.

Automation Routines

The centralized software interface enables automation of
station functions. These automation routines include:

- Positioning of antennas to properly track a satellite
during its pass.3

- Closed loop frequency adjustment of the
transceiver to compensate for doppler shift.

- Archiving and formatting of data collected from
the TNC.

3 This automation was achieved previously through the use of InstantTrack,
but incorporating this function into a single interface has several
advantages, especially when considering the Internet gateway that is
discussed in the following section.

- Station configuration (communication protocols for
the TNC, satellite frequencies, tracking data) for a
particular satellite contact session.

- Equipment diagnostics to monitor equipment
performance.

- Routine station keeping such as clock
synchronization and Keplerian element update.4

Automation of station procedures greatly improves operator
efficiency. The operator is freed from the manual, time
intensive support functions of the station to concentrate on
the primary purpose of the station, satellite command and
control.

Internet gateway

The centralization of station control into a single software
package enables the development of custom interface
gateways to the software. The primary interface to Mercury
is an Internet gateway. An operator with an Internet
connection can obtain full access to the ground station
control system through a standard telnet application. This
Internet interface provides numerous global access channels
to the station resulting in a dramatic increase in the
accessibility of the ground station.

Mercury reduces the dependence of geographic placement
of stations on the geographic location of operators. Stations
can now be placed in geographic locations that optimize
satellite contact windows. For example, the SSDL ground
station has about 30 minutes of prime contact time with a
satellite in a low-earth, polar orbit per day. A ground station
equipped with Mercury placed in Kiruna, Sweden, a city
north of the Arctic Circle, would allow SSDL operators over
300 minutes of contact time per day.

Though designed for operator interface through a telnet
application, the text based command protocol of the Internet
gateway allows other interface possibilities. A Java applet
could be developed to provide a graphical user interface to
Mercury. A C program or Perl script could be written to
entirely automate a satellite communication session.

4 Keplerian elements are data sets published by NASA used to generate
azimuth and elevation angles for satellite tracking and antenna positioning.

Centralized Interface

Status &
Control

Antennas

Transceiver

TNC

Power Control
Module

Automated Control

Local Control

Remote Control

Figure 4 - Block diagram of Mercury system

4. MERCURY IMPLEMENTATION

A prototype Mercury system has been implemented in the
SSDL ground station. Key features of the system are
operational including the centralized software interface, the
automated control routines, and the Internet gateway.

The centralized software interface resides on an Intel 486
computer running Windows 95. The code was written in the
C programming language using the Win32 API, an
application programming interface containing system
defined functions to access operating system features. The
Windows 95 platform was chosen because of its widespread
use, the readily available online documentation and support
for programming, and the existence of key software drivers
to interface to station equipment.

Windows 95 is a thread-based multitasking operating
system [2]. Mercury utilizes multitasking by spawning
concurrent threads to handle each of the serial ports opened
for communication. Mercury communicates to the operating
system through function calls of the Win32 API. These
functions allow Mercury to allocate memory, process
keyboard strokes, manipulate windows, output to the screen,
monitor serial port and Internet socket activity, etc.
Windows 95 communicates to Mercury through a message
passing system. These messages act like software interrupts
allowing Mercury to process operating system data like
pressed keys from the keyboard, data packets from Internet
sockets, and serial port activity. Figure 5 is a software flow
diagram for Mercury.

Antenna positioning is performed through function calls to a
dynamically linked library5, RR.DLL, written by Joe
Holman [3]. These functions allow the antenna azimuth and
elevation angles to be specified. The DLL file interfaces to
a specialized computer expansion card, the Kansas City
Tracker [4], which is electrically connected to the antenna
position motor controller.

The TNC is interfaced through standard serial port
communication at a default of 9600 baud, eight data bits,
even parity, and one stop bit. These port parameters can be
altered to optimize communication with the TNC. Mercury
supports both binary and text output from the TNC.

Similarly, the transceiver is controlled through serial port
communication. Transmit and receive frequencies are
tunable and the transceiver can be polled for receive signal
strength. Voltage level converter circuitry is required to
convert the RS-232 voltage levels of the serial port (bipolar
voltages of +-5V to +-15V) to the TTL voltage levels of the
transceiver (0V to 5V).

The Internet gateway uses the Transmission Control
Protocol/ Internet Protocol (TCP/IP) [5] to implement a text
based command protocol. A typical telnet application can
be used to command Mercury through the gateway.
Mercury loosely emulates the telnet protocol6 and allows
single user access. Figure 6 is a screen shot showing a login

5 A DLL file is a group of software functions collected together. DLL files
allow for efficient programs shared use of common code.
6 The telnet protocol is defined by RFC 854 “Telnet Protocol
Specification”. RFC stands for “Request For Comments”, written
definitions of the protocols and policies of the Internet.

Windows 95
Operating System

Message Processing
Antenna Control

TNC Control

Transceiver
Control

Command Parser

Internet Socket
Routines Power Control

Serial Port
Interface Threads

Commands

Serial data

Socket output

Serial port output

OS Messages

Mercury Control
Software

Figure 5 - Software block diagram

and several command executions through the Internet
gateway with the Opal microsatellite. The Internet gateway
is used for all Mercury contacts, both remote and local.

Antenna position control has been automated in the Mercury
prototype. Code from the Simple Tracking Program by
Christie Harper [6] was incorporated into Mercury to
calculate azimuth and elevation angles for satellite passes.
These calculations are derived from Keplerian elements,
orbital description parameters that NASA publishes
approximately every two weeks.

5. RESULTS

The Mercury prototype system is under development.
Members of SSDL are performing operational testing of
Mercury while conducting satellite communication sessions
with SSDL satellites. Preliminary qualitative assessment of
SSDL’s Mercury-enabled ground station demonstrates that
satellite communication sessions through Mercury are
improved over operation using a conventional ground
station.

SSDL Operational Testing

The Mercury prototype is currently in use by SSDL
students. Design teams are performing operational testing
of SSDL’s microsatellites, Sapphire [7] and Opal [8].
Student researchers are also conducting operational
experiments on Sapphire.

The Sapphire and Opal design teams are developing
operational procedures requiring the use of the vehicle
under several simulated orbit conditions (orbital position,
solar panel currents, etc). Mercury enables flexibility in a
designer’s physical location during work. The simulated
satellite contact times are often at late, inconvenient hours.
Mercury frees designers from coming to the station at these
late hours and enables them to access the station from their
home computers.

The Opal design team has an extreme example of freedom
in the designer’s physical location. The primary CPU
programmer is studying abroad this quarter in Germany.
Mercury has allowed this designer to access the Opal
engineering model vehicle and perform operational testing.
In addition, several modifications to Mercury could be done
to also allow the designer to recompile Opal’s operating
system code and download to the Opal vehicle. Therefore
he could continue software development despite the fact that
he is in Germany and Opal is in California.7

Mercury has also simplified satellite data collection and
analysis during development. The Opal design team has
written several software programs that automatically collect
payload data, process the raw data by generating plots, and
publish it to easily accessible web pages. Opal designers
can now analyze processed, formatted satellite data within
moments of the vehicle downloading it.

Several students are performing health monitoring
experiments on Sapphire [9]. Sapphire transmits a simple
beacon encoded with the health status of the vehicle. A
beacon receiving station has been developed to detect this
beacon and notify vehicle operators through a standard
personal pager system. Mercury allows the operators to
respond to beacon status without having to be physically
present at the ground station. The “on call” operators with
pagers are free to carry on daily activities as long as they are
within Internet access.

Preliminary Qualitative Assessment

The Mercury system consists of three functional
components: the centralized interface, the internet gateway,
and the automation routines. Table 1 summarizes the
benefits of these functional components. The qualitative
assessment shows that a Mercury enabled ground station
improves an operator’s ability to conduct satellite
communication sessions. Mercury enables tele-operation of
unstaffed, completely automated OSCAR-class ground
stations.

7 An estimated 20 lines of code could be added to perform this task but the
designer is enjoying his time in Germany, so we decided to give him a
break.

Figure 6 - Screen capture of Mercury control session

Table 1 – Qualitative Assessment of Mercury Benefits

Mercury Functional Component Summary of Benefits

Centralized Interface

1) Reduces operator multiplexing between station
equipment by bringing control to a single location.

2) Simplifies operation of station equipment by creating a
similar command sequence for all equipment.

3) Enables computer automation of routine station
functions.

Internet Gateway

1) Reduces dependence of geographic location of operators
on the geographic location of stations.

2) Improves accessibility to stations by allowing remote
control.

3) Enables access to unmanned stations placed world wide
from a single location.

Automation Routines

1) Increases ground station performance by enabling a
computer to perform functions more precisely and more
quickly than a human operator could.

2) Reduces cost of station operation by reducing human
attention to the station.

The implementation of Mercury may not be optimal. The
student developed custom software of Mercury is a risk.
A commercially available product might be available to
implement the functions of Mercury while being backed
by commercial support. Also, the cost of a commercial
product could be less than the required cost of paying
students to develop the software.

6. FUTURE DEVELOPMENT

The Mercury system is a prototype and under
development. Future work will expand software
capabilities, add hardware system components, and
implement station automation routines.

Software

The current version of software provides basic
functionality, but significant additions are needed to
complete Mercury. Security protocols are rudimentary
and do not provide adequate safety measures. Routines
need to be written to provide robust security measures.
The current orbital engine is less accurate than desired
and does not calculate satellite velocity needed for
doppler shift correction. Custom software is being
developed to replace the current engine and provide this
functionality. A software watchdog will be added to
monitor Mercury software performance. If an error or
failure is detected, the watchdog will restart Mercury or
reboot the host PC. Also, a graphical user interface will
be developed using Java to enhance connectivity to
Mercury’s Internet gateway.

Hardware

Hardware expansion will first focus on implementation of
the power control module. Figure 7 shows a block
diagram of the module. Mercury will control individual
power relays for each station component through an I2C
bus interface. I/O expander modules residing on the I2C
bus will receive command information from the software
and toggle the appropriate relay control lines. The I2C
bus is two-wire serial bus developed by the Philips
Corporation for integrated component communication
[10].

Another improvement will be the addition of transceiver
diagnostic hardware to verify proper transceiver
operation.

Automation

Control of station equipment through a centralized
interface has been achieved. Station automation involves
computer control of routine station operations that free an
operator to focus on satellite communication.
Development of station automation will also be a primary
focus of future development.

Closed loop control routines to correct for doppler shift
will be written in order to precisely tune the station
transceiver thereby maximizing received signal strength.
In addition, Keplerian element updates will be automated
by writing functions to download these elements from
established NASA web sites. At a higher level, an
intelligent command and telemetry executive capable of
managing satellite contacts will be added. This system

Figure 7 – Block diagram of Power Control Module

will take contact-specific tasks (such as ‘download file’ or
‘schedule a photo to be taken’), derive appropriate
spacecraft commands and telemetry responses, and
robustly execute these procedures while accounting for
typical contact problems.

Finally, the Mercury-enabled ground stations will be
integrated within the overall autonomy architecture of the
SSDL spacecraft command and control network.
Ultimately, this system will accept very high level
direction (direct client specification of products or
services) which will be planned and scheduled for
subsequent execution over a series of ground station
contacts. In addition, the stations will serve as part of a
multi-satellite health beacon network in order to enable
cost-effective anomaly detection.

6. CONCLUSIONS

SSDL had developed a ground station control system,
Mercury, that centralizes station equipment control into a
single interface, provides Internet access to the interface,
and automates ground segment tasks. This system allows
SSDL to explore ground station automation issues. It also
enables direct human console control, remote human tele-
operation, and script/program based autonomous control
of station equipment.

A low-cost prototype of Mercury has been implemented
in the SSDL OSCAR-class ground station. Preliminary
Mercury results demonstrate an increase in operator
efficiency. Centralization of control has decreased the
multiplexing of operator time between control panels of
equipment. Automation of ground tasks has freed

operators to focus on satellite contacts rather than
operating support equipment such as antenna tracking and
transceiver tuning.

Mercury has also decreased the dependence of ground
station location on operator location. The operators are
now able to control the ground station via the Internet,
thereby providing virtual global access to the station.

ACKNOWLEDGEMENTS

The authors wish to thank NASA Ames and the NASA
New Millennium Program for its support in developing
this research program. Special thanks are given to Prof.
Robert Twiggs for administering this project.
Appreciation is also extended to SSDL’s operations
research students Mike Swartwout, Brian Engberg, and
Carlos Niederstrasser, to the Opal software engineer Greg
Hutchins, and to Santa Clara University student Corina
Hu for their useful feedback and assistance in the design
and implementation of this system. Apprecition is also
extended to the reviewers of this paper. Their valuable
comments helped This work is being performed in partial
satisfaction of graduate studies at Stanford University.

REFERENCES

[1] Kitts, Christopher A., "A Global Spacecraft Control
Network for Spacecraft Autonomy Research," In
Proceedings of SpaceOps '96: The Fourth International
Symposium on Space Mission Operations and Ground
Data Systems, Munich, Germany, September 16-20, 1996.

AC Power
Supply

AC Relay

Power Plugs

DC Power
Supply

AC Relay

AC Relay

AC Relay

Input/Ouput
Expander

Power Control
Module

I2C
Bus

[2] Schildt, Herbert, Windows 95 Programming Nuts &
Bolts: For Experienced Programmers, Berkeley: Osborne
McGraw-Hill, 1995.

[3] Holman, Joe (AD7D), “32-Bit KCT Driver for
Win95”, 1996,
ftp://ftp.amsat.org/amsat/software/win32/rotor-
control/kctrr95.zip.

[4] Kansas City Tracker Web Site, L. L. Grace
Communications, http://www.llgrace.com/.

[5] Stevens, W. Richard, TCP/IP Illustrated, Volume 1,
Reading, Mass.: Addison Wesley, 1994.

[6] Harper, Christie, “STP: Simple Tracking Program”,
1994, ftp://ftp.amsat.org/amsat/software/ source/stp.zip.

[7] Twiggs, Robert J., and Michael A., Swartwout,
"SAPPHIRE - Stanford's First Amateur Satellite", In
Proceedings of the 1998 AMSAT-NA Symposium,
Vicksberg, MI, October 14-16, 1998.

[8] Engberg, Brian, Jeff Ota, and Jason Suchman, "The
OPAL Satellite Project: Continuing the Next Generation
Small Satellite Development," In Proceedings of the 9th
Annual AIAA/USU Conference on Small Satellites, Logan,
Utah, September 19-22, 1995.

[9] Swartwout, Michael, and Christopher A. Kitts,
“Automated Health Operations for the SAPPHIRE
Spacecraft," In Proceedings of ITC/USA '96: The 33rd
Annual International Telemetering Conference, Las
Vegas, NV, October 30- November 1, 1997.

[10] Paret, Dominique and Carl Fenger, The I2C Bus,
From Theory to Practice, New York: John Wiley and
Sons, 1997.

BIOGRAPHY

James Cutler is a doctoral candidate
in Electrical Engineering at Stanford
University. His research focuses on
developing reliable space systems
from commercial off the shelf
products. Through his research, Mr.
Cutler is developing a low-cost, space
flight testbed to study radiation effects

on microelectronics. Mr. Cutler is project leader of
SSDL’s second microsatellite, Opal, and is a principal
investigator on the third microsatellite, Emerald. He was
also a research assistant at Purdue University’s NASA
Specialized Center of Research and Training in bio-
regenerative life support. He developed an autonomous
growth chamber and studied plant seedling response to
stress. Mr. Cutler received a BS in Electrical Engineering
from Purdue University and an MS in the same field from
Stanford University.

Christopher Kitts is a doctoral
candidate in Stanford University’s
Design Division where he specializes in
spacecraft design and command and
control systems. He holds a joint
position as the Graduate Student
Director of Stanford’s Space Systems
Development Laboratory and as the Co-
Director of the Santa Clara Remote

Extreme Environment Mechanisms Laboratory at Santa
Clara University. Mr. Kitts is also a space systems
engineer with Caelum Research Corporation at NASA's
Ames Research Center where he develops spacecraft
design and autonomy strategies for NASA's New
Millennium Program. Mr. Kitts has served in the Air
Force as a mission controller of and the Chief of
Academics for the Defense Satellite Communications
System III spacecraft constellation. He has held a
research position at the Air Force Phillips Laboratory and
has taught numerous graduate courses in space system
design. Mr. Kitts received a BSE from Princeton
University, an MPA from the University of Colorado, and
an MS from Stanford University.

